1. 首页 > 中央空调

怎样计算用多大的冷却塔

1、以日立RCU120SY2为例:

冷凝:37℃蒸发:7 ℃蒸发器:Q = 316000 Kcal/h Q = 632m3/h冷凝器:Q = 393000 Kcal/h Q = 786m3/h这些在日立的说明书上可以查到。

2、以马利冷却塔为例:

则: 786×12 = 9432 m3/h(每小时的水流量)选用马利SR-100可以满足(或其它系列同规格的塔,如SC-100L)在选用水泵时要在SR-100的100吨水中留有10%的余量,在比较低的扬程时可选用管道泵,在扬程高时则宜选用IS泵。 100×11=110吨水/小时选用管道泵GD125-20可以满足。

3、而在只知道蒸发器Q=316000Kcal/h时,则可以通过以下公式算出需要多大的冷却塔:316000×125(恒值)= 395000 Kcal/h,125--冷凝器负荷系数395000÷5 = 79000 KG/h = 79 m3/h79×12(余量) = 948m3/h(冷却塔水流量)

电制冷主机-通式:匹数×2700×12×125÷5000 或 冷吨×3024×12×125÷5000 = 冷却塔水流量m3/h。

冷却塔是水与空气进行热交换的一种设备,它主要由风机、电机、填料、播水系统、塔身、水盘等组成,而进行热交换主要由在风机作用下比较低温空气与填料中的水进行热交换而降低水温。

水塔的构造及设计工况在说明书上有注明,而我们现在采用的水吨为单位是国际上比较常用的单位。在计算选型上比较方便,另冷却塔在选型上应留有20%左右的余量。

扩展资料:

冷却塔工作原理:

发电厂冷却塔的作用就是利用从下往上流动的空气去冷却从上往下流动的水。 冷却后的水最主要的作用是送到凝汽器里去把在蒸汽轮机中做过功的蒸汽冷凝成水再送回锅炉中去加热。 

如果没有这个冷却塔蒸汽就无法冷凝成水再送回锅炉,发电的热力循环就无法建立,工质也无法回收。

火力发电厂冷却塔节能节水技术 火力发电厂冷却塔

可以通过公式计算

蒸发损失E(m3/h)

E=a(R-B)

a=e(t1-t2)

a—蒸发损失率,%;

R—系统中循环水量,m3/h;

B—系统中排污量,m3/h

t1,t2—循环冷却水进、出冷却塔温度,℃;

e—损失系数,与季节有关,夏季(25~30℃)时,为015~016

冬季(-15~10℃)时,为006 ~008

春、秋季(0~10℃)时,为010 ~012

风吹损失D(m3/h)(包括飞溅、雾沫夹带)

D=(02%~05%)R

排污损失B(m3/h)

B=E/K-1

K-浓缩倍数

扩展资料:

水面蒸发影响因素

根据蒸发的发生机制,可将影响蒸发的因素分为两大类:一类是物体表面以上的气象条件,如太阳辐射、温度、湿度、风速、气压等。

另一类是物体自身的因素,对于水面蒸发来说,有水体表面的面积和形状、水深、水质和水面的状况等因素。以下分别就这些因素作简单的分析。

(1)太阳辐射。太阳辐射直接供给蒸发所需的能量,尤其对水面蒸发来说,太阳辐射几乎都用于蒸发,因此,太阳辐射是影响蒸发的主要因素。太阳辐射有日变化、季节变化和年际变化,水面蒸发也会随着这些变化而发生相应地变化。

(2)温度。随着水温的增加,水分子的运动速度会加快,从而更易于逸出水面,所以水面蒸发量会随着水面温度的增加而增加。而直接影响水温的主要因素是气温,所以气温的变化会影响水面蒸发的变化。但由于水面蒸发的影响因素较为复杂,气温的变化有时与水面蒸发规律并不十分一致。

(3)湿度。水面上方大气的湿度增加,其中的水汽分子数量增加,饱和水汽压差减小,水面与大气的水汽压差越小,水分子由水面逸出的速度越慢。因此,在相同条件下,空气湿度越小,水面蒸发量越大。同时,湿度的变化与气温也有着十分密切的关系。

(4)水汽压差。水汽压差是指水面的水汽压与水面上空一定高度的大气水汽压之差。一般来说,空气密度越大,单位体积的水汽分子数量越多,水汽压就越大。

反之,则水汽压越小。大气的水汽压越大,水面与大气的水汽压差越小,水面蒸发量也越小,这与湿度变化对蒸发的影响基本一致。

(5)风速。风能够加强空气之间的对流和交换,使水面上空的水汽分子不断被带走,从而保证蒸发面与上空始终保持一定的水汽压差,使得蒸发持续进行。在一定范围内,风速越大,空气流动越快,越有利于水汽在空气中的对流和交换,从而增加水汽界面的水汽压差,越有利于水面的蒸发。

但当风速达到一定程度时,水面的蒸发趋于稳定,此时影响相对较小。同时当冷空气到来时,风速增加不仅不会促进水面蒸发,相反还会减少蒸发,甚至导致凝结。

(6)水面面积。水体蒸发表面是水分子汽化时必经的通道。一般来说,水面面积越大,则蒸发量越大,蒸发作用进行得越快。对于局部区域来说,水面面积越大,其上空的水汽越不易被带离水面区域,水面上空的水汽含量越多,越不利于水面蒸发的进行。

(7)水深。水体的深浅对水面蒸发也有一定的影响。总的来说,春夏两季浅水比深水水面蒸发量大,秋冬两季则相反

这是因为若水深较浅,水体的上、下部分交换相对比较容易,混合充分,水体各部分温差小,几乎相同,并与气温变化基本一致,对水面蒸发的影响较为显著。

春夏两季气温较高,水温也较高,水面蒸发量大,秋冬两季水面蒸发量则较小。水深较大,水温在0~4。C变化时,水体存在“热缩冷胀”的效应,从而使水体上下部分产生对流作用;当水温超过4℃时,对流作用停止。

此外,水深大,水体蕴藏的热量也大,这对水温将起到一定调节作用,使水面蒸发量随时间的变化显得比较稳定。

(8)水质。水面蒸发不仅会受水量影响,而且还受到水质的影响,即水中溶解溶质多少的影响。一般来说,水中溶质的浓度越大,水体蒸发量越小,比如海水比淡水的蒸发量就小2%~3%。

这是由于溶质的存在而减小了单位水面面积内水分子的数量,即在本质上减小了纯水面蒸发面积,从而减小了水体的蒸发量。

此外,水体蒸发表面若有杂物等覆盖,水体表面接受的太阳辐射就会减少,水体蒸发量也会随之减小。

冷却塔补水量估算

火力发电厂冷却塔节能节水技术

高效雾化降温降低蒸发损耗装置

一、技术背景

冷却塔是能源动力及化工等领域的重要传热传质设备,其作用是将排出生产工艺流程的废热,通过使循环冷却水在塔内进行传热传质过程,将循环冷却水的温度降低。循环水在冷却塔中以传热和蒸发两种方式与空气进行热交换,传热即直接将循环水的热量传递给空气使其的温度升高;而蒸发是通过循环水向空气中的蒸发使空气湿度增大,称为潜热传递方式。由于空气在冷却塔中的温度升高,且蒸发饱和压力随其温度增高而增大,而冷却塔出口即为饱和湿空气,因此潜热占总热量传递的份额相当大,对火电厂的大型自然循环冷却塔而言冬天潜热占50%左右,而夏天潜热则占70%以上。这种换热方式导致了大量的蒸发水量损失。然而淡水资源短缺是当前世界面临的重要问题。火电企业是耗水大户,目前普遍采用的常规湿冷系统的冷却塔在冷却循环水的同时通过蒸发向环境排出大量的水分,以300MW机组为例,每年通过冷却塔消耗的淡水量在500万吨左右。

二、冷却塔的工作原理

冷却塔是指在塔内将热水喷洒到淋水填料上形成水滴或水膜,自上而下地与从下向上流动的具有吸热能力的冷空气进行对流传热,并利用水的蒸发扩散作用带走水中热量的冷却设备。这种冷却设备主要为湿式冷却塔。湿式冷却塔又以抽风式逆流冷却塔型式为主。在设计冷却塔时,为了减少水量损失,一般设有节水装置收水器。它是由一排或多排倾斜的板条或弧形叶板组成,布置在整个塔断面上,作用是阻拦热水与填料碰撞形成散溅的小水滴。小水滴夹杂在上升的湿热空气中,因突然改变方向,被截留下来。这种节水装置对湿热空气中的水蒸汽基本不起作用。冷却塔的设计是根据水的蒸发原理进行的,是以蒸发扩散带出热量为前提。蒸发损失是为完成水的冷却而必须蒸发的水量。因此,根据冷却塔理论,为达到一定的冷却效果,应尽可能增大蒸发量。

三、冷却塔蒸发水损耗

由于冷却塔的这种工作原理致使大量的水被蒸发,损失相当大。按照冷却塔理论设计的蒸发损失率占总循环水量的百分数计算,三天时间即可将循环量蒸发掉。如每小时冷却水的总循环量为10万立方米,蒸发损失率为总循环水量的

15%。则在三天的循环冷却过程中即可把10万立方米的水蒸发逸尽。可想而知,冷却塔水蒸发的损失有多大。为了冷却效果,也只能顾此失彼了。那么,能否找到既不影响冷却效果又不致使冷却水量大量损失的方式呢?根据热力学理论和除湿原理对冷却塔的蒸发损失和冷却效果进行研究发现:在开放的系统内,通过向系统输入能量,即可将水蒸汽从湿热空气中分离出来。这种方法就是在冷却塔内用冷水作冷凝剂直接冷凝水蒸汽,水蒸汽遇冷凝结成水,从而将水蒸汽从湿热空气中分离出来,蒸发损失因此而减少。

四、冷却塔节能节水

冷却塔节水技术,是在冷却塔内用冷水作冷凝剂,使水蒸汽冷凝成水,从而减少冷却塔水蒸发损失,以实现冷却塔节水降低蒸发水损耗。在冷却塔风筒入口下方设冷凝喷射器,将低于湿热空气的冷凝剂均匀地喷淋成雾状细小水滴,喷淋面积与冷却塔内截面积相同,喷淋密度根据冷却塔的冷却水量而确定。喷射器喷出的冷凝剂不与冷却过程的热水接触,只与上升的湿热空气中水蒸汽密切接触进行冷凝过程。水蒸汽遇冷凝结成水,凝结水与冷凝剂一起沿冷却塔内壁落入集水池。

五、冷却塔节能节水的性能

冷凝为与汽化相反的热传递过程。当水蒸汽遇冷凝结时,首先放出潜热,水蒸汽冷凝成冰。这时,冷凝水的温度与水蒸汽的温度相同,冷凝热等于汽化潜热。也就是说:热冷却时所放出的热量等于冷加热时所吸收的热量。在理论上称为热量平衡。这时,若使冷凝水的温度再降低,就需对冷凝水继续冷却。那么,这时的能量从何而来呢?根据热力学理论阐述的可逆过程和耗散结构分析,要打破热传递平衡态的存在,就需有外界提供的能量才能实现。在一个开放的系统中,完成非热平衡状态,除从外界获取能量和物质得到维持外,系统本身还应具有一定的失稳功能,并且热量传递的多少与过程的具体进行方式有关。因此,在冷却塔

这个可以人工控制的开放系统中,水的冷却降温,不必以蒸发水分带出热量为代价,而只要在系统内人工改变热量传递方式,即能量转化方式,就能把热量带出系统,降低水温。在冷却塔这个开放的系统内,冷却过程和冷凝过程是连续不变的相变过程,并且,都是人工控制的条件下所进行的强化传热过程。

六、冷却塔节能节水原理

根据热量平衡原理,在一个设备内完成两个相反的相变过程是不可能。但在一个开放式的冷却塔内完成冷却过程和冷凝过程是可行的,正如热力学理论所论述的:在一个开放式的系统内,能量可通过不同的方式进行转化。冷却塔热量的转化过程可在人工控制的条件下进行。为此,把冷却塔人为地分隔成两个设备进行不同的热传递过程。首先,保证有效的冷凝空间,是完成冷凝过程所必备的条件。根据水冷却原理,在冷却过程中,水蒸汽的蒸发量越大,水的冷却效果就越好。而在冷凝过程,水蒸汽溢出的越少,冷凝效果就越好。至此,在冷却塔内要进行两个正好相反的相变过程,就还需具备相应的条件才能进行热传递。其次,使其不相互接触。我们知道,在冷却塔内参与两个相变过程的热传递介质都是水和空气。显然,在一个开放式的设施里,空气是不能隔开的,而水可以自由隔离。因此,把冷却过程的热水与冷凝过程的冷水分开隔离,使其不接触,只让冷空气与冷却过程热水进行热传递。当热水把热量传递给空气后,形成饱和的湿热空气,随着抽风的风力上升。冷却过程的热水被降低温度后降落于集水池。随着风力把热量传向冷水,湿热空气中的水蒸汽失去热量后被凝结成水。此时,凝结水的温度和湿热空气的温度是相同的,在理论上蒸发潜热与湿热空气放出的显热即趋近平衡,也就是说,总体温度并没有下降。这就需要第三个条件,增加降温能量,就是增加所需的通风量,即增加风压克服冷凝过程产生的通风阻力,增大风量降低湿热空气向冷凝过程传递的温度。系统经增加能量后,凝结水的温度得到降低。而热量在相互转化的相变过程中最终被传递到空气中,由风力从塔中带出。至此,风力带走的是热量而不是水蒸汽。凝结水和冷凝剂一起沿冷却塔内壁降落于集水池,最终使水蒸发的损失减少。

七、冷却塔节能节水特点

作为一种节水方式,不但可有效减少冷却塔的水蒸发损失,而且还能提高冷却效果。采用本装置,即使对于现有的冷却塔只需适当调整,其节水率也将大幅度提高。而且,用水作冷凝剂直接冷凝水蒸汽,是最经济的节水方法。

节水方法装置的技术特点如下:

(1) 工艺结构简单,经济实用。

(2) 节水效率高。

(3) 喷淋装置自控设计,操作方便,安全可靠,不会对冷却水系统造成不良影响。

(4) 运行费用低。

八、冷却塔节能节水高效雾化装置

近年来,化工单位应用于洗气、降温的喷头很多,但由于很多喷头雾化效果差,气液接触不彻底,使好多洗气、降温设备形同虚设,没有得到极好的发挥作用。特别到夏季,由于降温设施不好,使原料气温度超标,严重影响了企业的正常生产。基予这个原因,我公司气体净化设计研究中心通过实验室模拟实验,总结行业内诸多喷头的不足,通过改造、实验、再改造,最终研制开发了系列洗气、降温、气液传质等塔类专用高效雾化喷头,投入市场后,得到了广大客户的一致好评。

九、雾化效果

十、技术参数

(1)上液压力:04-05Mpa

(2) 单只喷头流量:5-40m3/h

(3)安装:按我公司提供的图纸进行安装。

十一、应用

该喷头雾化效果特别好,能够将高效雾化喷头喷出的水流瞬间雾化,在水雾作用下,细小的水珠和(蒸汽)颗粒结合并固定,用雾状水捕捉(蒸汽)颗粒,降低(蒸汽)颗粒浓度,(蒸汽)遇到水雾,便被固定在水珠上,并一起降落,从而达到降低蒸发损耗的效果,具有水流雾化好,控制范围大,降低蒸发水损耗效果好,安全可靠等特点。高效雾化装置不仅可应用于(降低蒸发水损耗,降低蒸汽颗粒),还可以应用于气液的高效传质设备,气体的洗尘、降温。最大的特点是:效率高、阻力小、防堵、投资小,运行费用低。

十二、应用方法

在冷却塔填料的上方,设计架构进行固定,然后再架构上每一米至一米五安装一个高效雾化洗尘降温装置,用程序控制的方法,开启高效雾化洗尘装置,循环使用,达到高效雾化降低蒸发水损耗,降温效果好,可使蒸发水损失降低60%左右,冷却塔温度降低3-5℃,汽轮机真空提高,降低背压,提高热效率,节约发电煤耗等效果,是一种先进的高效雾化降低蒸发水损耗降温技术,可广泛应用于电力、石油、化工、冶金、建材等工矿企业冷却塔节能节水。

十三、经济效益

从实施的试验结果表明,本技术可以从工业用水大户排空损失的水雾中回收,大量的工业用水,回收效率达90%以上,节约水资源,降低工业成本。若以50万千瓦发电厂为例,每小时被空气带走的蒸发雾化水损失约1500吨,全年约1100万吨。若采用本技术节水装置,按回收率90%计算,每年可节约水约1000万吨,由于回收的是优质循环水,又可减少排污损失,并且,高效雾化节水装置设备费用不会超过全年节水费用,耗电量很小,所以经济效益是显著的。

冷却塔的计算说明

选(B)

一、冷却塔补水量问题的研究,没有例子的话,这么说肯定是不行的,下面就举个例子来详细的说明一下

例如:一台冷却塔(冷却水量Q=300m3/h,进水温度37度,出水温度32度)在环境温度为39度的时候,一天的冷却补水量大概为多少立方米(每天运行15小时),补水管如果从生活水中引来,是否在起始端一定要设防污隔断装置,防止冷却水污染生活水

1蒸发量(WE)kg/h ,一般空调用的场合,Tw1-Tw2=5℃,WE=00083×L,也就是说循环水量的083%被蒸发

2漂水量(WD)kg/h

根据冷却塔的构造、通风速度有所差别,一般漂水量如下:

开放式,循环水量的03%

密闭式,循环水量的015%

3排污水量(WB)kg/h

排污水量是根据水质、浓缩倍数而不同一般空调用的场合,开放式、密闭式一样为循环水量的03%

补水水量(ΔL)kg/h

补水水量是上计3项的合计(ΔL=WE+WD+WB)

补水水量是上计3项的合计(ΔL=WE+WD+WB)

空调用开放式的场合:循环水量的143%

闭式的场合:循环水量的128%

一般补水量为循环水量的1%-15%

二、补充水量一般占循环水量的4%,包括蒸发损失15、风吹损失10、排污损失15

1、循环水量在冷却塔运转当中,因下列因素逐渐损失:

A 当热水与冷空气在塔体内产生热交换过程中,部份水量会变成气体蒸发出去;

B 由于冷空气系借助机械动力(马达与风车)抽送,在高风速状况下,部份水量会被抽送出去;

C 由于冷却水重复循环,水中之固体浓度日渐增加,影响水质,易生藻苔,因此必须部份排放,另行以新鲜的水补充之。

2、补给水量计算说明:

A 蒸发损失水量(E)

E = Q/600 = (T1-T2)L /600

E 代表蒸发水量 (kg/h) ; Q代表热负荷(Kcal/h);

600代表水的蒸发潜热(Kcal/h); T1代表入水温度(℃);

T2代表出水温度(℃); L代表循环水量(kg/h)

B飞溅损失水量(C)

冷却塔之飞溅损失量依冷却塔设计型式、风速等因素决定之。一般正常情况下,其值约等于循环水量的01~02%左右。C定期排放水量损失(D)

定期排放水量损失须视水质或水中固体浓度等因素决定之。一般 约为循环水量之03%左右。

D补给水量(M)

水塔循环水之补给总水量等于 M=E + C + D

冷却塔用于空调时,温度差设计在5℃,此时冷却塔所须之补给水量约为循环水量的2%左右。

本文采摘于网络,不代表本站立场,转载联系作者并注明出处:http://www.9iwh.cn/zykt/202305/320560.html